404 research outputs found

    Supercooperation in Evolutionary Games on Correlated Weighted Networks

    Full text link
    In this work we study the behavior of classical two-person, two-strategies evolutionary games on a class of weighted networks derived from Barab\'asi-Albert and random scale-free unweighted graphs. Using customary imitative dynamics, our numerical simulation results show that the presence of link weights that are correlated in a particular manner with the degree of the link endpoints, leads to unprecedented levels of cooperation in the whole games' phase space, well above those found for the corresponding unweighted complex networks. We provide intuitive explanations for this favorable behavior by transforming the weighted networks into unweighted ones with particular topological properties. The resulting structures help to understand why cooperation can thrive and also give ideas as to how such supercooperative networks might be built.Comment: 21 page

    Clustering of Local Optima in Combinatorial Fitness Landscapes

    Get PDF
    Using the recently proposed model of combinatorial landscapes: local optima networks, we study the distribution of local optima in two classes of instances of the quadratic assignment problem. Our results indicate that the two problem instance classes give rise to very different configuration spaces. For the so-called real-like class, the optima networks possess a clear modular structure, while the networks belonging to the class of random uniform instances are less well partitionable into clusters. We briefly discuss the consequences of the findings for heuristically searching the corresponding problem spaces.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    Dynamics of Unperturbed and Noisy Generalized Boolean Networks

    Full text link
    For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in Random and Scale-Free Boolean Networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems' stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.Comment: 29 pages, publishe

    Ensemble Learning for Free with Evolutionary Algorithms ?

    Get PDF
    Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles

    A Study of NK Landscapes' Basins and Local Optima Networks

    Get PDF
    We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces (Doye, 2002). We use the well-known family of NKNK landscapes as an example. In our case the inherent network is the graph where the vertices are all the local maxima and edges mean basin adjacency between two maxima. We exhaustively extract such networks on representative small NK landscape instances, and show that they are 'small-worlds'. However, the maxima graphs are not random, since their clustering coefficients are much larger than those of corresponding random graphs. Furthermore, the degree distributions are close to exponential instead of Poissonian. We also describe the nature of the basins of attraction and their relationship with the local maxima network.Comment: best paper nominatio

    Conformity Hinders the Evolution of Cooperation on Scale-Free Networks

    Full text link
    We study the effects of conformity, the tendency of humans to imitate locally common behaviors, in the evolution of cooperation when individuals occupy the vertices of a graph and engage in the one-shot Prisoner's Dilemma or the Snowdrift game with their neighbors. Two different graphs are studied: rings (one-dimensional lattices with cyclic boundary conditions) and scale-free networks of the Barabasi-Albert type. The proposed evolutionary-graph model is studied both by means of Monte Carlo simulations and an extended pair-approximation technique. We find improved levels of cooperation when evolution is carried on rings and individuals imitate according to both the traditional pay-off bias and a conformist bias. More important, we show that scale-free networks are no longer powerful amplifiers of cooperation when fair amounts of conformity are introduced in the imitation rules of the players. Such weakening of the cooperation-promoting abilities of scale-free networks is the result of a less biased flow of information in scale-free topologies, making hubs more susceptible of being influenced by less-connected neighbors.Comment: 14 pages, 11 figure
    corecore